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A B S T R A C T   

In France, oyster aquaculture has been historically developed in intertidal zones, with shellfish farming areas 
covering much of the Atlantic coast. Monitoring these off-bottom cultures where oysters are grown in plastic 
mesh-bags set on trestle tables is mandatory for the maritime administration to check compliance with a 
Structural Plan Document (SPD), while also being important for stock assessment in relation to carrying capacity 
issues. However, traditional monitoring methods are time-consuming, labor-intensive, and inefficient in covering 
large intertidal areas. In this study, we used a new GIS-based analytical method to assess the potential of high- 
resolution Unmanned Aerial Vehicle (UAV) multispectral data to retrieve spatial information on oyster-farming 
structures using Bourgneuf Bay (France) as a case-study. A non-parametric machine learning algorithm was 
applied to four UAV flight orthomosaics collected at different altitudes (12, 30, 50, and 120 m) to identify oyster 
mesh-bags. These supervised classifications achieved overall accuracies above 95% for all tested altitudes. In 
addition, an accurate distinction of oyster-bag mesh sizes (4, 9 and 14 mm) was obtained for 12–50 m flights, but 
there was a lower accuracy at 120 m. Across all flights, the 4 mm mesh size was the least well detected (72.14% 
Producer Accuracy). This information can be used to identify bags with specific mesh-sizes used for spat or adult 
grow out. Finally, we accurately measured oyster table heights using a high-resolution Digital Surface Model 
(DSM) derived from Structure from Motion (SfM) photogrammetry. The 50 m flight was suggested as the best 
compromise to obtain precise measurements of the oyster table heights while covering larger areas than lower 
altitude flights. This demonstrates that UAV technology can provide a set of spatial variables relevant for 
shellfish farmers and coastal managers in an efficient, rapid, and non-destructive way to monitor the extent and 
characteristics of oyster-farming areas regularly.   

1. Introduction 

The Pacific cupped oyster (Crassostrea gigas Thunberg, 1793) is one 
of the world’s most important shellfish mariculture species and is even 
considered the most cosmopolitan of all oyster species (Harris, 2008). In 
2022 it dominated the global shellfish aquaculture production with a 
total worldwide production of 610300 tonnes (FAO, 2022). It was first 
introduced to replace depleted stocks of indigenous oysters in several 
countries, but now this species is the choice oyster of cultivation in many 

regions of the world (FAO, 2011) and has been successfully cultivated in 
more than 17 countries (Harris, 2008). Successful production of C. gigas 
is greatly influenced by its ability to adapt to varied environmental 
conditions by being extremely tolerant to a wide range of seawater 
temperatures and salinity, resistant to highly turbid areas, able to grow 
in various latitudes, and exhibiting fast growth (Martínez-García et al., 
2021; Miossec et al., 2009). 

Since its introduction between 1966 and 1970 (Buestel et al., 2009), 
C. gigas has been successfully cultivated and is the main shellfish culture 
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species in France. C. gigas production in France topped 79500 tonnes in 
2020 (FAO, 2023), making it the biggest oyster producer in Europe. 
Since the 19th century, oyster culture was established in the intertidal 
zone with shellfish farms occupying large intertidal areas in the French 
Atlantic coast (Barillé et al., 2020; Buestel et al., 2009; Palmer et al., 
2020). Off-bottom culture is France’s most widely used farming tech-
nique for oyster cultivation. Oysters are typically grown in plastic mesh 
bags, suspended on trestle tables at ca. 1 m above the substrate, which 
are exposed during low tides (Barillé et al., 2020; Kervella et al., 2010). 

In Europe, individual states typically manage aquaculture activities, 
each with its own regulatory and management policies. Marine aqua-
culture in France is regulated by marine fisheries legislation Law No.97- 
1051 on Maritime Fisheries and Mariculture and Decree of January 9, 
1852 on Maritime Fisheries (Hedley and Huntington, 2009). All inter-
tidal areas in France belong to the Public Maritime Domain under the 
supervision of the State Directorate of Maritime Affairs (Barillé et al., 
2020), using a concession system to grant state-owned intertidal areas 
for shellfish farming. Oyster concessions are usually leased for 30 years 
and must comply with several technical specifications such as the type of 
culture and the rearing density (Barillé et al., 2020). The shellfish 
farmers have to deal with the numerous technical requirements outlined 
in a Structural Plan Document (SPD) (Barillé et al., 2020) to develop 
their practices over a large portion of the French intertidal area. As a 
result, this becomes a time-consuming and labor-intensive task for the 
Maritime Affairs, involving regular monitoring of the extent and status 
of the oyster farms, verification of compliance with marine spatial plans 
or regulations, and determining whether it is adversely affecting the 
environment (Bell et al., 2020; Buestel et al., 2009). Oyster table height 
is one of the variables monitored by the administration. It is crucial for 
intertidal oyster farming, being related to growth and mortality caused 
by herpesvirus 1 (OsHV-1 μVar) (Lorgeril et al., 2018). Until now, table 
heights have been assessed manually, but could greatly benefit from an 
automated remote sensing method. 

The development, practice and management of the fishery/aqua-
culture industry can be supported by satellite remote sensing technol-
ogy, which offers a unique capability to obtain valuable data at different 
spatial and temporal scales and resolutions (Gernez et al., 2021; Ouel-
lette and Getinet, 2016). In addition, regular and repeated satellite ob-
servations can be useful for site selection, production monitoring, water 
quality monitoring, or to inspect the environmental impacts of 
oyster-farming areas (e.g. Gernez et al., 2014, 2017; Jiang et al., 2022; 
Palmer et al., 2020). However, some gaps in satellite imagery constrain 
its use, such as cloud coverage, the need for atmospheric corrections, or 
the asynchronism with tides (Chand and Bollard, 2021). Furthermore, 
satellite imagery at coarse spatial resolution can potentially confuse 
machine learning techniques especially when assessing complex and 
heterogeneous environments (Ouellette and Getinet, 2016; Windle et al., 
2022). 

In recent years, UAVs have emerged as a promising tool to collect 
high-resolution data of coastal and intertidal areas, offering new op-
portunities for precise farm management (Candiago et al., 2015; Windle 
et al., 2019, 2022). In fact, they offer a low-cost, rapid, repeatable and 
time-efficient alternative that does not carry the main limitations of 
satellite remote sensing (Espriella et al., 2020; Román et al., 2021; 
Windle et al., 2019, 2022). Pixel-based classification methods have been 
used to distinguish different features and objects in marine environ-
ments using remote sensing imagery (Joyce et al., 2018), since they 
show distinctive spectral signatures that can be used to classify them 
adequately. In addition, several studies showed that oysters have higher 
reflectance in the NIR wavelength region due to the surface reflection 
from the shell (Chand and Bollard, 2021; Le Bris et al., 2016). Conse-
quently, research concerning the use of UAVs for oyster mapping has 
been nearly exclusively focused on the characterization of oyster reefs 
(e.g. Chand and Bollard, 2021; Espriella and Lecours, 2022; Espriella 
et al., 2020; Windle et al., 2019, 2022), while their potential for moni-
toring cultivated oyster in farming areas has yet to be tested to the best 

of our knowledge. 
In this study, we assessed the potential of high-resolution data 

collected by a UAV-mounted multispectral camera to identify oyster 
tables occupied with oyster mesh-bags in a case study on the French 
Atlantic coast (Bourgneuf Bay). Several flights at different altitudes were 
carried out in order to determine the best Ground Sampling Distance 
(GSD) to first detect the oyster tables, and second to identify the 
different oyster-bag mesh sizes. A machine learning classification algo-
rithm was applied to obtain thematic maps of oyster concessions, vali-
dated with in situ data taken during the field survey. Finally, oyster table 
height was estimated using a high-resolution Digital Surface Model 
(DSM) obtained with Structure from Motion (SfM) photogrammetry. 
This was also validated with in situ field data. 

2. Materials and methods 

2.1. Study area 

Bourgneuf Bay is a macrotidal bay located southeast of the Loire 
estuary on the French Atlantic coast (Fig. 1A), with a tidal amplitude 
between 2 and 6 m (Le Bris et al., 2016). The intertidal area is mostly 
composed of large mudflats and rocky areas, and it is mainly used for 
shellfish aquaculture (Gernez et al., 2017; Le Bris et al., 2016). The 
pacific oyster Crassostrea gigas (Thunberg) is extensively cultivated in 
this bay, with 5330 metric tons produced in 2012 on its approximately 
283 aquaculture farms, most being small family-run companies (Guil-
lotreau et al., 2018). This study was conducted in the oyster-farming 
area of “La Bernerie” (Fig. 1B–E, 47◦03′N, 2◦01′W) located in the 
northern part of the bay. The selection of this area was primarily based 
on the spectral complexity of the oyster concessions and their sur-
rounding environment, composed of mudflats, wild oyster reefs, and 
rocky areas colonized by macroalgae. In addition, its accessibility by 
foot during low tide facilitated the easy movement of the equipment. 

2.2. UAV data collection 

In this study, a quadcopter DJI Matrix 210 (M210) equipped with the 
MicaSense RedEdge-MX multispectral dual sensor, which collects spec-
tral information with 10 bands, was used: coastal blue (444 ± 28 nm), 
blue (475 ± 32 nm), green (531 ± 14 nm and 560 ± 27 nm), red (650 ±
16 nm and 668 ± 14 nm), red Edge (705 ± 10 nm, 717 ± 12 nm and 740 
± 18 nm) and near-infrared (NIR, 842 ± 57 nm). The multispectral 
sensor controls light conditions and solar angle changes during the flight 
by using its own Downwelling Light Sensor (DLS) with built-in GPS. In 
addition, the included calibration panel (RP05-2025214-OB), which was 
photographed moments before each UAV flight, was used to perform 
radiometric calibration. This process enables the conversion of raw pixel 
values captured by the multispectral sensor into reflectance, thus 
ensuring that the final orthomosaics do not appear underexposed, 
exhibit irregular coloration, or display extreme banding. 

Data collection was conducted on the October 12, 2022, during low 
tide and clear sky meteorological conditions. A total of four flights at 
different altitudes (12, 30, 50, and 120 m above the ground) were per-
formed in order to elaborate high-resolution reflectance orthomosaics 
for each spectral band and DSM. Flight planning was carried out with the 
DJI Pilot (Dà-Jiāng Innovations (DJI), Shenzen, Guangdong, v. 1.1.5) 
application and then uploaded to the UAV computer system. Flight pa-
rameters considered a 70–80% front and side overlap and were main-
tained uniformly along the entire study area due to the MicaSense’s own 
terrain following tool. In addition, the battery autonomy limited the 
duration of the flights to no more than 30 min, although the flight at 120 
m high was completed in two segments. French and European civil 
aviation regulations were followed during all UAV operations. 

The software Pix4D mapper v.1.8.3 (Pix4D SA, Lausanne, 
Switzerland) was used to produce reflectance orthomosaics and topo-
graphic products for each UAV flight using a SfM photogrammetric 

A. Román et al.                                                                                                                                                                                                                                 



Estuarine, Coastal and Shelf Science 291 (2023) 108432

3

technique. After importing the selected images, a sparse point cloud was 
reconstructed by “capture alignment”. A 3D dense point cloud, an 
interpolated DSM and a Digital Terrain Model (DTM) were generated 
before the mosaicking process. In the last processing step, the radio-
metric calibration “Sun Irradiance and Sun Angle” was followed to 
convert radiance into reflectance since the meteorological conditions 
did not change during the performance of the UAV flights. The resulting 
orthomosaics were projected to RGF93 Lambert 93, EGM 2008. The GSD 
achieved for each orthomosaic and for the corresponding generated 
DSM and DTM are displayed in Table 1. 

2.3. Ground reference data 

Ground Control Points (GCPs) were uniformly scattered along the 
study area for georeferencing UAV imagery (Fig. 1C). However, due to 
the significantly larger coverage area of the 120 m flight, it was not 
feasible to achieve full coverage distribution with GCPs. Measurements 
at those discernible white georeferenced targets were collected prior to 
each flight using a Trimble © Geo XH 6000 differential GPS (dGPS), with 
a horizontal and vertical accuracy of 0.1 m. After “capture alignment” 
with Pix4D mapper software, the GCP information was imported using 
the GCP/MTP Manager and marked using the 3D dense point cloud, 
obtaining a mean Root Mean Square (RMS) error in georeferencing of 
0.145 cm (12 m flight), 0.926 cm (30 m flight), 0.15 cm (50 m flight) and 
1.105 cm (120 m flight). Similarly, 46 in situ table height points were 
measured above and under the oyster tables, to evaluate the accuracy of 
the predicted table heights retrieved from the SfM photogrammetry. In 

addition, more than 50 ground-based photographs and measurements of 
the oyster-bag mesh sizes were carried out to validate the bag mesh-size 
classification accuracy. 

2.4. Data analysis 

Fig. 2 summarizes the workflow followed in this study to achieve the 
proposed objectives. Firstly, the oyster tables were detected and classi-
fied from the UAV reflectance orthomosaics generated for each flight 
altitude using a non-parametric machine learning technique (Support 
Vector Machine, SVM algorithm) for supervised classification. Secondly, 
the same technique was applied to all the flight altitudes in order to 
distinguish the different oyster bag mesh-sizes. Finally, oyster table 
height was estimated as the difference between the DSM and DTM after 
SfM photogrammetry processing. 

2.4.1. Oyster tables and oyster-bag mesh size detection 
This study used Support Vector Machine (SVM) to identify and map 

oyster tables using pixel-based classification. SVM was selected since it 
can handle statistically unknown large datasets, applying kernel func-
tions to map them into a larger-dimensional space where a hyperplane 
aims to correctly divide different classification classes (Bahari et al., 
2014; Vapnick, 1995). Miranda et al. (2020) suggested that running the 
SVM algorithm with the radial basis function set as a kernel parameter 
offers the best outcomes when working with optically complex systems 
such as this case study in intertidal areas. The SAGA GIS software 
(Conrad et al., 2015) was used to perform SVM classification, by using 
all bands as inputs when performing image classification at each flight 
altitude. 

For oyster tables detection, 50 training polygons of a maximum size 
of 1 m2 were manually created for each class and distributed throughout 
the entire orthomosaics. Up to five different classes were selected and 
repeated in all flight altitudes tested (12, 30, 50, and 120 m): “oyster 
tables”, “water”, “muddy substrate”, “shadows”, and “micro-
phytobenthos (MPB)”. The selection of a constant quantity for all UAV 
surveys was based on achieving optimal classification accuracies while 
maintaining efficient processing capacities. Regarding oyster-bag mesh 

Fig. 1. A) Sentinel-2 true color composite 
(September 20, 2022) of the study area location of 
Bourgneuf Bay (French Atlantic coast). Framed in 
yellow are the oyster concessions according to the 
shellfish farming cadaster. B) Oyster-farming area of 
“La Bernerie”, showing oyster concessions organized 
in parallel lines of oyster trestle table. C) Detail of the 
UAV flight area showing the shapes of the different 
altitude flights performed and the 20 GCPs used for 
precise geolocation. D) Oyster table height measure-
ment with a dGPS for validation. E) Oyster mesh-bags 
set on parallel rows of trestle tables. Coordinate 
reference system for panel A: WGS84, and for panels 
B–C: WGS84/UTM Zone 30N. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   

Table 1 
GSD obtained on each UAV reflectance orthomosaic and the corresponding DSM 
and DTM generated.  

Flight Altitude 
(m) 

DSM (cm/ 
px) 

DTM (cm/ 
px) 

Reflectance orthomosaics (cm/ 
px) 

12 0.83 4.13 0.83 
30 2.17 10.85 2.17 
50 3.56 17.80 3.56 
120 8.44 42.20 8.44  
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size detection, five different classes were chosen for all altitudes tested, 
which provided the highest spatial resolution: “4 mm mesh size”, “9 mm 
mesh size”, “14 mm mesh size”, “shadows”, and “other”. Unlike oyster 
table detection, the number of training polygons does not remain con-
stant because there is greater spectral homogeneity between the selected 
classes, requiring more trial and error to achieve a satisfactory result. 
Finally, the obtained classification results were imported into the QGIS 
software (QGIS Development Team, Geographic Information System, 
Open Source Geospatial Foundation Project, v.3.16.14, https://qgis.org) 
to filter them through sieving groups of 15 pixels (or fewer) that cor-
responded with misclassification errors (associated with noise or un-
wanted classifications). These pixels were reclassified by considering the 
value of the most dominant category in their neighborhood. 

An accuracy assessment of each SVM classification was performed 
following Oloffson et al. (2014). Reported classes were compared with 
randomly selected points (different from training polygons) that were 
manually classified to generate a confusion matrix that describes the 
classification model’s performance. Some statistical parameters are 
included in the confusion matrix such as (i) Overall Accuracy (OA), 
which defines the number of correctly classified pixels from the total 
sample size, with values above 80% considered as good and reliable 
(Alberg et al., 2004; Kay et al., 2017; Oloffson et al., 2014); (ii) Kappa 
coefficient, that measures the relationship between classification and 
ground truth values, and for which values closer to 1 are considered as 
better results; (iii) user’s accuracy, that indicates the probability that a 
predicted classification value is correctly classified; and (iv) producer’s 
accuracy, that indicates the probability that a given classification value 
is correctly classified. User accuracy focuses on the model’s ability to 
avoid false negatives, while producer accuracy emphasizes the model’s 
ability to avoid false positives (Román et al., 2021). 

2.4.2. Oyster table height estimation 
In this study, we evaluated the most suitable flight height to obtain 

precise measurements of the oyster table heights, for which all the DSM 
and DTM retrieved from photogrammetry with Pix4D mapper were used 
(Table 1). Oyster table heights were estimated by subtracting the DTM 
from the DSM. The DSM constitutes a relief that includes all the surface 
elements, such as the oyster tables, the wild oyster reefs, rocky areas, or 
other elements present in the study area. The DTM shows just the bare 
substrate surface, so the difference between both models would describe 
the oyster table heights (Mallet and David, 2016). To assess the accuracy 
of oyster table height modelled from photogrammetric products, these 
modelled oyster table heights were assessed as function of in situ oyster 

table heights (continuous) and UAV flight altitudes (categorical: 12 m, 
30 m, 50 m and 120 m) using linear regression within the programming 
language R (Equation (1) derived from with the “equatiomatic” package: 
Anderson et al., 2023, R Core Team, 2022). Linear regression estimates 
and 95% confidence intervals were calculated and visualised using the 
“tidyverse” ecosystem of packages (Wickham, 2022). Sample against 
fitted residuals, quartile-quartile and autocorrelation of temporally 
sequential simples were assessed visually, to fit assumptions of the 
model used. 

Pred = α + β1(True) + β2(Altitude30 m)+

β3(Altitude50 m) + β4(Altitude120 m) + β5(True × Altitude30 m)+

β6(True × Altitude50 m) + β7(True × Altitude120 m) + ε
(Eq.1)  

where “Pred” is the modelled oyster table heights from photogram-
metric products and “True” is the in situ measured oyster table heights. 

3. Results 

3.1. Oyster table detection 

Reflectance orthomosaics were used to map oyster tables within 
concessions through the application of the non-parametric machine 
learning algorithm SVM (Fig. 3). Three examples of classified conces-
sions are presented for a 120 m flight (Fig. 3: B, C and D), where oyster 
tables footprints were identified above three different backgrounds: 
water, MPB, and mud. Using VNIR (visible and near-infrared) imagery, 
it was possible to accurately map not only the oyster table footprint but 
also the type of background surrounding the tables. For the 120 m flight, 
the OA of the classification was 97.47% irrespective of the type of 
background (Table 2). In addition, oyster tables represented 2.19 ha 
(17.38% of the concession’s surface; Fig. 3) in the selected 12.6 ha of 
oyster concessions analysed. 

Performance was evaluated by varying the UAV flight altitude over 
ca. 2000 m2 area common to all flights (see Fig. 1C), so that the best 
parameters for oyster table detection could be determined when plan-
ning UAV flights. SVM classification of reflectance orthomosaics was 
obtained at different flight altitudes: 12, 30, 50, and 120 m (Fig. 4). 
Visual examination of the resulting thematic classifications indicated 
that the technique performed well at each altitude. Supporting the 
aforementioned statement, OA above 97% and Kappa coefficient of 
above 0.93 were obtained for each flight in the SVM accuracy assess-
ment (Table 2). The user and producer accuracies also showed values 

Fig. 2. Schematic representation of the workflow. 
SfM photogrammetry is applied to UAV multispectral 
data to generate reflectance orthomosaics and topo-
graphic models (DSM and DTM). SVM classifier is 
applied to reflectance orthomosaics for oyster tables 
and oyster-bag mesh size detection. Oyster table 
height is calculated as the difference between the 
DSM and the DTM. Results are validated with an ac-
curacy assessment based on Oloffson et al. (2014) for 
supervised classification and accuracy statistics 
calculated from ground reference data measured with 
a dGPS.   
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above 90% for oyster tables detection, without important disparities 
with different surrounding backgrounds. In addition, very small differ-
ences were found in oyster tables area estimates from a small common 
area between flights (Fig. 4A), representing approximately 13.52% 
(255.41 m2) for the 30 m flight, 13.57% (256.27 m2) for the 50 m flight 
and 13.34% (251.93 m2) for the 120 m flight. 

3.2. Oyster-bag mesh size detection 

For the highest spatial resolution UAV flight (8.3 mm/px at 12 m), 
the SVM technique was also applied in order to identify oyster-bag mesh 
sizes (4, 9, and 14 mm). With this method, it was possible to detect slight 

spectral differences between the different oyster-bag mesh sizes, due to 
the presence of epibionts and variable spectral mixture between the 
mesh and the oysters themselves. Oyster-bag mesh sizes classification 
compared to in situ validation points showed consistent results (Fig. 5 
and Table 3: 97.99% and 0.95 for OA and Kappa coefficients, respec-
tively). However, some small disparities were found when discrimi-
nating the 4 mm mesh size (Table 3: Producer Accuracy = 72.15%). 

The SVM technique was also applied to the rest of the flight heights 
to analyse the method’s performance with decreasing spatial resolution 
(2.17 cm/px at 30 m; 3.56 cm/px at 50 m; and 8.44 cm/px at 120 m). 
Validation points indicated consistent results for oyster-bag mesh size 
detection at these flight altitudes (Fig. 6), with similar OA and Kappa 

Fig. 3. A) Selected area of oyster concessions at “La 
Bernerie” (France) oyster-farming site. SVM classifi-
cation for identifying oyster table footprint over the 
three different backgrounds (water, MPB, and mud) 
in the 120 m UAV flight. Three examples of oyster 
concessions are represented with: B) a water layer; C) 
dense MPB biofilms colonizing the substrates; and D) 
bare muddy substrate. The first column is an RGB 
composite from red-668 nm, green-560 nm, and blue- 
475 nm UAV multispectral bands. SVM results are 
shown in second (just oyster tables) and third (oyster 
tables and backgrounds) columns. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   

Table 2 
Accuracy assessment of the SVM classification generated from UAV imagery at each flight altitude (12, 30, 50, and 120 m, respectively) using the SVM algorithm, 
including user accuracy (“U-acc”), producer accuracy (“P-acc”), the OA (%) and the Kappa coefficient.  

Class 12 m flight 30 m flight 50 m flight 120 m flight 

U-acc P-acc U-acc P-acc U-acc P-acc U-acc P-acc 

Oyster Table 91.59 88.19 98.11 97.66 96.18 95.51 94.11 95.32 
Other 99.43 99.51 98.25 99.51 98.37 99.61 98.05 99.47 
Shadows 98.28 95.93 96.97 86.77 97.39 87.24 97.26 82.82 
OA (%) 97.99 98.13 98.00 97.47 
Kappa coefficient 0.95 0.95 0.94 0.93  
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coefficient values at 30 and 50 m heights (Fig. 6: 95.88% and 94.69% for 
OA; and 0.91 and 0.90 for Kappa coefficient, respectively). However, an 
increased number of misclassifications were observed when performing 
the method at 120 m (Fig. 6: 86.97% and 0.71 for OA and Kappa coef-
ficient, respectively). As with the 12 m flight, confusion matrices of the 
other flights (see Supplementary Material Section) showed lower pro-
ducer accuracy values especially when discriminating the 4 mm mesh 
size from the rest. 

3.3. Oyster table height estimation 

Oyster table heights were estimated by subtracting the DTM from the 
DSM, obtaining elevation models for each UAV flight altitude (Fig. 7A). 
Across all flight altitudes the modelled oyster table heights and the in situ 
table heights showed a significant positive relationship (Table 4 and 
Fig. 7B). The lowest flight altitudes (12 and 30 m) showed similar pat-
terns of consistently overestimating oyster table heights by ~ 10 cm, 

Fig. 4. Oyster table detection at four UAV flight altitudes (12, 30, 50 and 120 m), of A) an area selected from the 12 m flight image. Detailed RGB composite and 
SVM classification at B) 12 m, C) 30 m, D) 50 m, and E) 120 m. Note that X and Y coordinates are sometimes listed on the same axis. 

Fig. 5. Oyster-bag mesh sizes detection at a 12 m UAV flight altitude. Examples of in situ measurements taken over: A) 9 mm; B) 14 mm; and C) 4 mm mesh sizes. In 
situ dGPS validation points are represented by white circles. 
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while increasing flight altitude caused a consistent underestimation of 
the table height of ~15 cm for the 120 m flight (Fig. 7B). The middle 
altitude flight (50 m) showed the least consistent predictions with 
overestimation at lower in situ heights and underestimation at higher in 
situ heights, yet was closest to the in situ values in the centre of the values 
measured (Fig. 7B). 

4. Discussion 

This research proposes a remote sensing approach for the monitoring 
of intertidal oyster-farming areas based on very high spatial resolution 
drone data. A workflow was developed using a UAV-mounted multi-
spectral camera and derived SfM photogrammetric products. Spectral 
and topographic metrics were tested at different flight altitudes and 
compared with in situ data to determine the best UAV flight settings for 
shellfish aquaculture areas monitoring. The methodology could be 
transferable to the Maritime Administration and shellfish farmers’ 

representatives for precision mapping and management at the spatial 
level of oyster concessions. The limitations and constraints of the pro-
posed method are further discussed. 

4.1. Oyster tables detection 

The continuous monitoring of coastal aquaculture areas is necessary 
to deal with carrying capacity issues and associated production loss or 
environmental impacts if not managed properly (Gernez et al., 2021; 
Pincinato et al., 2021). In the last few years, different remote sensing 
products have been used covering variable spatial resolutions, in order 
to generate spatial tools to support shellfish aquaculture (e.g. Barillé 
et al., 2020; Dean et al., 2013; Gernez et al., 2017; Jiang et al., 2022; 
Saitoh et al., 2011; Snyder et al., 2017). Moderate spatial resolution 
sensors such as MODIS or MERIS at 250 m or 300 m, provide useful 
information for site selection (Palmer et al., 2020) quantifying the 
spatio-temporal variability of environmental variables such as 
chlorophyll-a, turbidity, or surface temperature (Barillé et al., 2020), but 
are too coarse for analysis at the farm level. Higher spatial resolution 
sensors such as Sentinel-2 are spatially better suited (Gernez et al., 
2017), but the lack of flexibility in acquisition is a strong limitation in 
intertidal zones regarding low tide constraints. Consequently, new ap-
proaches that require higher spatial resolution strategies to obtain 
detailed information at the level of an oyster concession (median area of 
3375 m2 in Bourgneuf Bay) to identify oyster tables and oyster bags 
mesh size. 

The results obtained in this study demonstrated the potential of a 
UAV with a ten band multispectral sensor as a versatile and flexible 
solution to accurately detect and map oyster table footprint, through the 
use of the non-parametric machine learning algorithm SVM. Miranda 
et al. (2020) suggested that running the SVM algorithm with the radial 
basis function set as a kernel parameter offers the best outcomes when 
working with optically complex systems such as this case study in 
intertidal areas. In this work, SVM performed well regardless of the type 
of substrate the oyster table was found on. The marked spectral 

Table 3 
Confusion matrix and accuracy assessment of the SVM classification generated 
from UAV imagery at 12 m for the oyster-bag mesh size detection. Numbers 
correspond to the polygons of each training classified classes.  

Class Other 14 mm 
size 

4 mm 
size 

9 mm 
size 

Shadows Total 

Other 527 0 2 0 1 530 
14 mm size 3 151 4 3 4 165 
4 mm size 0 1 117 7 1 126 
9 mm size 2 2 8 132 2 146 
Shadows 2 1 0 0 171 174 
Total 534 155 131 142 179 1141 
User Accuracy 99.43 91.52 92.86 90.41 98.28  
Producer 

Accuracy 
99.51 98.24 72.15 94.18 95.92  

Kappa hat 0.98 0.91 0.93 0.90 0.98  
OA (%)      97.99 
Kappa 

coefficient      
0.95  

Fig. 6. A) SVM performance for oyster-bag mesh sizes detection at each UAV flight altitude (12, 30, 50, and 120 m, respectively). OA and Kappa coefficient are also 
displayed in the figure. Black box indicates the area zoomed in B. B) Zoomed in area of each classification over a paired row of oyster tables (9 mm and 4 mm mesh 
size, respectively) at each altitude. 
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differences between the oyster table covered with mesh bags and the 
backgrounds allowed an effective delimitation and differentiation from 
water, MPB and mud. Interestingly, MPB was well classified, which is an 
advantage of high-resolution VNIR multispectral sensors. Beyond 
detecting oyster tables, this classification method can be useful for 
precisely monitoring benthic vegetation. Top-down and bottom-up 
processes occur between oyster populations and benthic primary pro-
ducers (Newell, 2004). Oysters can stimulate the growth of benthic di-
atoms from the MPB (Echappé et al., 2018), but resuspended MPB can 
represent a significant fraction of an oysters diet (Decottignies et al., 
2007). The infrared bands of the multispectral sensor allowed the 
identification of macroalgae growing on the oyster bags (Fig. 8A–C). 
This growth of macroalgae was marginally observed in this study but 
can be very common in spring and summer. Some misclassifications 
were observed when the SVM had to differentiate between two spec-
trally similar classes such as wild oyster reefs and oyster tables (Fig. 8D). 

Fig. 7. A) Oyster table height maps (height expressed 
in meters) retrieved from the DSM and DTM obtained 
after SfM photogrammetry for each UAV flight (12, 
30, 50, and 120 m). B) Linear regression modelled 
oyster table height (m) as a function of in situ oyster 
table height (m) and UAV flight altitude (m) with the 
ideal 1 to 1 relationship plotted as a dotted black line. 
Coloured lines show model estimates with 95% con-
fidence intervals displayed by shading. Note 30 m 
regression line follows, almost identically that of the 
12 m line and is barely discernible.   

Table 4 
Linear regression outputs from modelled oyster table height (m) as a function of 
in situ oyster table height (m) and UAV flight altitude (m). True is used to signify 
the in situ measured oyster table heights. Bold values denote significant p values 
(<0.05) and asterick’s define level of significance: p < 0.0001 = “<0.0001***”; 
p < 0.001 = “***”; p < 0.01 = “**”; p < 0.05 = “*”.  

Terms Estimate Std. Error t value p value 

(Intercept) 0.051 0.069 0.734 0.470 
True 0.988 0.134 7.380 <0.0001*** 
12–30 m 0.005 0.099 0.047 0.960 
12–50 m 0.126 0.099 1.280 0.210 
12–120 m − 0.058 0.099 − 0.590 0.560 
True: 12–30 m − 0.007 0.189 − 0.037 0.970 
True: 12–50 m − 0.353 0.189 − 1.870 0.067 
True: 12–120 m − 0.269 0.189 − 1.420 0.160  

Fig. 8. A) False color composite (NIR 840 nm - red 668 nm – green 560 nm Micasense RedEdge-MX bands) and B) SVM classification of the 120 m flight. C) Detail of 
a rocky area where D) classification errors are identified with grey ellipses corresponding to wild oyster reefs growing at the vicinity of oyster-farming areas. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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However, this did not impact the oyster table footprint identification as 
oyster reefs occurred outside concessions, so were masked and omitted. 

4.2. Influence of flight altitude on oyster table detection 

Previous research have suggested that the accuracy of UAV-based 
photogrammetry-derived products is influenced by flight altitude, 
with higher altitudes resulting in lower spatial resolution (Anders et al., 
2020; Jiang et al., 2020; Liu et al., 2022). In this study, different GSD 
(Table 1) were achieved by carrying out UAV flights at different alti-
tudes (12, 30, 50, and 120 m) ranging from 0.83 cm per pixel at 12 m to 
8.44 cm per pixel at 120 m for the multispectral orthomosaic. At the 
lower spatial resolution of the 120 m flight only larger features can be 
identified (Fig. 3), resulting in fewer tie points in the final point cloud 
during processing. Regardless, the method worked well for the detection 
of oyster tables for all the flight altitudes tested, although the processing 
times were not the same in each of the cases. Interestingly, coarser 
resolutions, which took significantly less processing time, were not 
outperformed by finer resolutions for oyster table detection. Higher 
altitude flights can cover larger areas, offering the possibility to map 
oyster concessions for the whole bay. This reflects the robustness of SfM 
photogrammetry in using different quality images to reconstruct inter-
tidal environments with relatively good fidelity. For this reason, this 
GIS-based analytical tool could be used with data obtained at 120 m 
(maximal authorised flight height) to detect and delineate oyster table 
footprints for the ca. 1700 concessions of Bourgneuf Bay, which cover a 

surface of around 700 ha. These data obtained at 120 m can provide 
valuable information when compared with the shellfish cadaster of the 
Maritime Affairs administration (Fig. 9). Each concession is identified by 
a polygon and a simple visual examination informs whether they are 
exploited, unexploited, or if oyster tables have been set up outside the 
concession area. Within each concession, it is possible to identify double 
rows of oyster tables in compliance with the SPD (Fig. 9 bottom). This 
administrative document also indicates that each double row must be 
separated from the neighboring double rows by a minimal distance of 3 
m, which can be easily verified with any GIS software. Additional reg-
ulations from this SPD, such as the table height would require a higher 
spatial resolution as discussed further. Yet, the information on oyster 
table surface area obtained at 120 m, could be used in conjunction with 
an in situ sampling strategy of measuring oyster bag weights (Cognie 
et al., 2006) to obtain an estimation of the standing stock of cultivated 
oysters. This information is crucial to assess the carrying capacity of a 
shellfish ecosystem (Dame and Prins, 1998) and has not been available 
in Bourgneuf Bay for more than 20 years. 

4.3. Oyster bag mesh size detection 

As previously discussed, spatial resolution plays an important role in 
recognising small targets. On the French Atlantic coast, oysters are 
cultivated above the ground on trestle tables, placed in plastic bags with 
different mesh sizes, specifically adapted to the changing size of oysters 
during the cultivation cycle. The smallest oyster size grown in plastic 

Fig. 9. Shellfish cadaster identifying oyster concessions at “La Bernerie” oyster-farming area, with red dots indicating oyster tables set up outside concessions and 
white dots indicating unexploited concessions. Below, a zoomed area shows oyster tables organized in paired rows within each concession. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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bags corresponds to the so-called T6 produced by hatcheries: oysters 
retained by a 6 mm sieve. For these young oysters called spat, 4 mm 
mesh size bags are used. The largest oysters obtained at the end of the 
cultivation cycle of 3–4 years are placed in 14 mm mesh-size bags. Be-
tween these two mesh sizes, oyster farmers can also use 7 or 9 mm mesh 
size bags. Identification of the oyster-bag mesh size would allow the 
distinction of different cohorts with a minimum threshold of discrimi-
nation being between spat (4 mm mesh size) and adults (>9 mm mesh 
size). This information could be useful to obtain a more accurate esti-
mation of the standing stock by applying the respective average biomass 
estimated for oyster bags used to grow spat and adults respectively. The 
distinction of cohorts can also be used to assess population de-
mographics (Mann et al., 2009), and to obtain more realistic growth and 
production scenarios for the management of shellfish ecosystems using 
modelling approaches (Cugier et al., 2022). In this study, the SVM 
technique was applied to millimeter-scale spatial resolution UAV data 
(8.2 mm/px at 12 m flight altitude) in order to distinguish different 
oyster-bag mesh sizes. Although results generally proved accurate 
(97.99% OA and 0.95 Kappa coefficient), small misclassification errors 
also appeared when separating the spectral classes corresponding to the 
different mesh sizes. These errors are associated with the spectral sim-
ilarity between the different plastic bags. The mesh size dictates how 
much can be seen inside the bags and the oyster shells. However, other 
factors than mesh size can influence the spectral response of an oyster 
bag. More specifically, each oyster table pixel is composed of optical 
mixtures combining the spectral responses of the plastic itself, the shell 
mineralogy, the presence of sediment deposits, the presence of macro-
algae and of several epibionts such as cirripeds (Le Bris et al., 2016). At 
the very high spatial resolution of a 12 m flight (0.83 cm), the producer 
accuracy for the 4 mm mesh size was 72%, which means that approxi-
mately one-quarter of these mesh bags were not correctly identified by 
the SVM algorithm. Although in general terms the method worked well 
to classify the different classes for all tested flight heights (with high OA 
and Kappa coefficients), there was a decrease in the precision of the 
mesh bags detection with the decrease in spatial resolution, especially in 
the producer accuracy for the 4 mm mesh size, from 72% at 12 m to 
53.85% at 50 m (see Supplementary Material). Thus, based on this, 
alongside the spectral variability and complexity observed in the field, 
we concluded that the identification and mapping of oyster-bag mesh 
sizes could not be achieved at 120 m. It is possible at the operational 
flight altitude of 50 m (ie. that can cover larger areas than 12 and 30 m) 
but the detection of 4 mm mesh size should be improved with more 
training data. 

4.4. Oyster table height estimation 

The SPD stipulates that the oyster table height should be 1 m and no 
less than 50 cm. Intertidal oyster aquaculture on the French Atlantic 
coast is often located on soft-bottom sediment and the tables tend to sink 
into the mud, preventing water from circulating below the tables. 
Furthermore, table height influences the interaction of oysters with their 
environment, and is related to growth and mortality. Oyster mortality is 
markedly altered by host-pathogen interaction (Malek and Byers, 2016; 
Malek and Byers, 2017), and significant mortalities are related to the 
Pacific Oyster Mortality Syndrome (POMS) caused by herpesvirus 
(Lorgeril et al., 2018). Young oysters are notoriously more affected by 
the herpesvirus 1 than adults, with different mortality risk factors 
(Gangnery et al., 2019). The tidal exposure time is directly related to the 
table height, so with higher tables oysters spend more time emersed, 
being less exposed to OsHV-1 particles showing higher survival (Delisle 
et al., 2018; De Kantzow et al., 2017). Moreover, longer exposure to 
higher temperatures during emersion periods at low tide decrease oys-
ters’ sensitivity to the virus (Pernet et al., 2019). For farmers and coastal 
managers, using UAVs could become a fundamental tool to carry out 
oyster table height control without the need to resort to in situ mea-
surements that are labor and time-intensive. This study obtained oyster 

table height by exploiting topographic data produced by SfM photo-
grammetry. Modelled heights showed good accuracy when compared 
with in situ data for all flight altitudes tested but the 120 m flight showed 
less reliable values (Table 4). As expected, the best results were obtained 
when improving the spatial resolution, although almost equal values 
were surprisingly obtained when comparing the 12 m and 30 m flights. 
While the 50 m altitude flight was less consistent across the range of in 
situ oyster table heights, it was still more accurate than the 120 m flight. 
We therefore suggest that flying at 50 m could be a compromise for the 
table height estimation, with a larger area being covered. 

4.5. Practical recommendations 

Traditional methods of monitoring large oyster-farming areas are 
time-consuming and labor-intensive. Until now, two maritime affairs 
officers are doing field surveys to check the compliance of each 
concession with the SPD. With the tidal constraints and the surface to 
cover this could take several months. In Bourgneuf Bay, the Maritime 
Affairs administration has recently started to subcontract a commercial 
UAV company to conduct quicker surveys with RGB drones to check the 
compliance of oyster concessions with the shellfish cadaster. Our work 
suggests that more information can be automatically retrieved from very 
high-resolution multispectral data. Obtaining a high spatial accuracy 
with a drone equipped with a RTK positioning system would be the best 
option (Brunier et al., 2022a). If not, as was the case in this study, it is 
necessary to use a dGPS for the correct georeferencing of UAV data and 
its validation. 

It was possible to retrieve high-resolution 3D models and two- 
dimensional orthomosaics, obtaining valuable topographic variables 
such as oyster table height. Despite promising results, there are still 
some shortcomings of the spectral-based workflow outlined here that 
could be improved. For example, some small patches of oyster reefs were 
misclassified as oyster tables. The method was also not adapted to 
identify oyster tables covered by a small water layer. For future research 
on intertidal oyster-farming areas, it is recommended that the combi-
nation of spectral information and morphological analysis (texture, 
segmentation, morphometric index from topography …) are combined 
as has been applied to UAV imagery monitoring of wild oyster reefs. For 
example, Espriella et al. (2020) successfully performed an Object-Based 
Image Analysis (GEOBIA) in order to classify mudflat, salt marsh, and 
oyster reef habitats, obtaining very promising results just employing 
RGB bands. Espriella and Lecours (2022) also applied a GEOBIA work-
flow for a multiscale analysis to streamline habitat classifications. 
Windle et al. (2022) retrieved spectral and structural metrics from SfM 
photogrammetry with UAV to estimate intertidal wild oyster reef den-
sity. In addition, Chand and Bollard (2021) mapped wild oyster reefs 
with a VNIR sensor mounted on a drone performing a GEOBIA and a 
SVM classification analysis, showing that it was possible with just a 5 
band multispectral sensor. To emulate this work, initially a landform 
classification using geomorphon analysis (Brunier et al. 2022a, 2022b) 
was utilised to detect the oyster table footprint. However, high levels of 
misclassifications were encountered, especially when oyster tables were 
above water where the DSM reconstruction is highly distorted. 

Other important external factors that must be considered when using 
UAV imagery for shellfish aquaculture monitoring include shadowing, 
cloud coverage and tidal effects (Joyce et al., 2018). It is important to 
avoid changes in illumination that can influence the spectral charac-
teristics of oyster tables. Therefore, it is preferable to collect data in clear 
or completely covered skies. In addition, the solar position can cause 
shadowing from oyster tables, so it is recommended to plan the UAV 
surveys close to solar noon and towards the sun azimuth (Windle et al., 
2022). In this study, we showed that it was possible to detect oyster table 
footprints from their spectral characteristics even when there was a 
water layer below them. However, making the flights coincide with the 
lowest tide conditions is recommended. 
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5. Conclusions 

In this work, we showed the potential of an UAV-based analytical 
workflow using machine learning to accurately monitor oyster-farming 
structures in intertidal areas. The method can enhance traditional in situ 
surveys saving time and money to obtain information on oyster table 
footprint and table height with an automated process being more effi-
cient than photointerpretation. We tested the method’s performance at 
different spatial resolutions with variable flight heights to help the 
maritime administration and shellfish farmers optimise the use of UAVs 
for management purposes. We also demonstrated that spectral data can 
be used to separate different oyster-bag mesh sizes, although further 
research combining GEOBIA and multispectral imagery is suggested to 
reduce misclassification errors. In addition, this tool could be used to 
understand how oyster aquaculture interacts with the surrounding 
ecosystem, allowing regulators to deliver actionable information to 
support smart regulation for aquaculture practices. Eventually, the 
identification of the oyster mesh-bags for the whole bay could be used 
with an ad hoc sampling strategy of the oyster biomass/total weight per 
bag to estimate the standing stock of cultivated Crassostrea gigas, an 
essential piece of information to assess the carrying capacity of shellfish 
ecosystems. 
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Cognie, B., Haure, J., Barillé, L., 2006. Spatial distribution in a temperate coastal 
ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg). 
Aquaculture 259 (1–4), 249–259. https://doi.org/10.1016/j. 
aquaculture.2006.05.037. 

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fisher, E., Gerlitz, L., Wehberg, J., 
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