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a Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR2160, Nantes F-44000, France 
b Consiglio Nazionale delle Riecerche, Instituto di Science Marine (CNR-ISMAR), Rome, Italy   

A R T I C L E  I N F O   

Keywords: 
Remote sensing 
Seagrass mapping 
Intertidal mapping 
Spectral-radiometry 
Satellite spectral data 
Machine learning 
Essential biodiversity variables 
Earth observation 

A B S T R A C T   

Monitoring biodiversity and how anthropogenic pressures impact this is critical, especially as anthropogenically 
driven climate change continues to affect all ecosystems. Intertidal areas are exposed to particularly high levels 
of pressures owing to increased population density in coastal areas. Traditional methods of monitoring intertidal 
areas do not provide datasets with full coverage in a cost-effective or timely manner, and so the use of remote 
sensing to monitor these areas is becoming more common. Monitoring of ecologically important monospecific 
habitats, such as seagrass beds, using remote sensing techniques is well documented. However, the ability for 
multispectral data to distinguish efficiently and accurately between classes of vegetation with similar pigment 
composition, such as seagrass and green algae, has proved difficult, often requiring hyperspectral data. A ma
chine learning approach was used to differentiate between soft-bottom intertidal vegetation classes when 
exposed at low tide, comparing 6 different multi- and hyperspectral remote and in situ sensors. For the library of 
366 spectra, collected across Northern Europe, high accuracy (>80%) was found across all spectral resolutions. 
While a higher spectral resolution resulted in higher accuracy, there was no discernible increase in accuracy 
above 10 spectral bands (95%: Sentinel-2 MSI sensor with a spatial resolution of 20 m). This work highlights the 
ability of multispectral sensors to discriminate intertidal vegetation types, while also showing the most important 
wavelengths for this discrimination (~530 and ~ 730 nm), giving recommendations for spectral ranges of future 
satellite missions. The ability for multispectral sensors to aid in accurate and rapid intertidal vegetation classi
fication at the taxonomic resolution of classes, could be a significant contribution for future sustainable and 
effective ecosystem management.   

1. Introduction 

Soft-bottom intertidal ecosystems support a diversity of habitats 
(seagrass meadows, honeycomb worm reefs, oyster reefs, mudflats) and 
biological communities worldwide (Mouritsen and Poulin, 2002; Mur
ray et al., 2019; Van Der Maarel, 2003). The richness and diversity these 
habitats contain help to provide numerous ecosystem services, such as 
protection against coastal erosion, carbon regulation, oxygen produc
tion, seasonal habitat for migratory birds (Zoffoli et al., 2022), and re
serves and nurseries for fisheries (Gardner and Finlayson, 2018). 
However, the significant roles of intertidal areas for biodiversity and the 
ecosystem services they provide are not universally known (Reddin 
et al., 2022; Unsworth et al., 2022; Unsworth et al., 2019a, 2019b). Like 
the majority of coastal ecosystems worldwide, intertidal areas are 

exposed and vulnerable to anthropogenic pressures, particularly more so 
due to their closer proximity to potentially destructive human activity 
(Green et al., 2021; Murray et al., 2019). Global warming, sea-level rise 
and the rising frequency of extreme climatic events lead to a reduction of 
their surface (Masson-Delmotte et al., 2021), and to a diminution of their 
capability to recover from perturbations (Schiel et al., 2021). The effects 
of climate change impact intertidal habitats inconsistently; declines of 
certain species and the proliferation of others (Bryndum-Buchholz et al., 
2019). Intertidal areas are also directly degraded by human activities, 
such as coastal urbanization (Momota and Hosokawa, 2021), use of 
various biochemical contaminants (Durou et al., 2007; Hope et al., 
2021), eutrophication (Cardoso et al., 2004), land reclamation (Sedano 
et al., 2021), and shellfish farming (Garmendia et al., 2021). These 
pressures impact intertidal biodiversity (Beltrand et al., 2022) and the 
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ecosystem services it provides (Brondízio et al., 2019; Gardner and 
Finlayson, 2018). 

To reduce these impacts and improve the protection of intertidal 
areas, several measures have been implemented over the past decades in 
Europe, such as the Water Framework Directive (WFD, Parliament and 
Council, 2001), and the Marine Strategy Framework Directive (MSFD, 
Parliament and Council E, 2008). However, according to the Intergov
ernmental Science-Policy Platform on Biodiversity and Ecosystem Ser
vices (IPBES, Brondízio et al., 2019), current efforts are insufficient to 
reach the objectives of ecosystem conservation and sustainable exploi
tation. The ecological status of many intertidal areas have never been 
evaluated, with many areas uncharacterised. Even in documented areas, 
there are many socio-environmental challenges to implementing effi
cient protection and sustainable exploitation (Unsworth et al., 2019a). 
Providing updated and accurate maps of intertidal areas is a prerequisite 
to addressing such challenges (McKenzie et al., 2020). However, the 
traditional methods for mapping rely on field surveys to estimate species 
abundance, biomass and habitat surface, which are time-consuming and 
labor-intensive (Nijland et al., 2019; Olmedo-Masat et al., 2020). The 
collected data are also limited by sampling constraints, as many inter
tidal areas are difficult to access. Remote sensing can overcome these 
issues by acquiring temporally and spatially resolved observations of 
coastal areas (Papathanasopoulou et al., 2019; Veettil et al., 2020). 
Likewise, the use of drones can increase the surveyed area compared to 
traditional survey methods while providing greater spatial resolution 
and flexibility than satellite imagery (Gomes et al., 2018). 

Marine vegetation, defined as any species of plant that, at any time in 
its life, must inhabit water, other than freshwater, includes a wide range 
of highly important intertidal species, such as seagrasses, mangroves 
and marine algae. In the visible and near-infrared range (VNIR), exposed 
intertidal vegetation can be identified by its spectral reflectance (Douay 
et al., 2022; Olmedo-Masat et al., 2020). Solar irradiance is absorbed by 
plant pigments in the visible spectral range (400 to 700 nm: Hallik et al., 
2017), while in the NIR range (700 to 900 nm), light is reflected by 
tissues in pluricellular organisms (Ustin and Jacquemoud, 2020), and by 
the sediment background for biofilms composed of unicellular photo
autotrophs (Barillé et al., 2011). The spectral signature or lack thereof 
can be used as a marker of the different classes of organisms (Thorhaug 
et al., 2007). Reflectance is increasingly being used to measure Essential 
Biodiversity Variables (EBVs) in coastal ecosystems, such as species 
traits or ecosystem structure and function (Muller-Karger et al., 2018; 
Pereira et al., 2013). Time-series derived from satellite observations also 
make it possible to study changes in biodiversity metrics and environ
mental drivers over decades, as demonstrated recently for the moni
toring of seagrass status (Lizcano-Sandoval et al., 2022; Zoffoli et al., 
2021), or macroalgae invasions (Hu et al., 2017; Santos et al., 2020). 
Most satellite sensors are multispectral (Joyce et al., 2009; Xue and Su, 
2017), and generally measure the reflectance using three to ten spectral 
bands in the VNIR spectral domain. Depending on the band numbers and 
characteristics, the discrimination of different types of marine vegeta
tion can be limited (Casal et al., 2013; Kutser et al., 2006). Hyperspectral 
missions such as PRecursore IperSpettrale della Missione Applicativa 
(PRISMA), or EnMAP acquiring data along a large number of narrow 
spectral bands could improve habitat identification accuracy (Hestir 
et al., 2015; Ustin et al., 2004). However, these sensors often provide 
relatively low spatial and temporal resolutions (Veettil et al., 2020), can 
contain high levels of noise per spectral band, and are not openly 
available resources (e.g. PRISMA imagery: 30 m pixel size, 29 day orbit 
repeat cycle and are only available on prior request or EnMAP imagery: 
30 m pixel size and a 27 day orbit repeat cycle). 

Mapping intertidal habitats of ecological importance, such as sea
grass beds, can be achieved with a multispectral resolution in the case of 
exposed monospecific meadows observed during low tide (Zoffoli et al., 
2020, 2022). However, when seagrass are mixed with other green 
vegetation, discrimination with multi- or even hyperspectral sensors (in 
situ and satellite) is challenging (Phinn et al., 2018; Veettil et al., 2020). 

Green macroalgae and more specifically the taxonomic class of Ulvo
phyceae share the same pigmentary composition with seagrass and 
should be a priori more complex to discriminate (Oiry and Barillé, 2021). 
Other taxonomic classes common in intertidal soft-bottom environments 
such as Xanthophyceae and Bacillariophyceae could also be confused 
with seagrass when present at low cover (Zoffoli et al., 2020). It is 
generally agreed that the identification at broad taxonomic levels (eg. 
class level) is more precise than at the species level (Casal et al., 2013; 
Kutser et al., 2006). Assessing the ability of a sensor to discriminate 
seagrass meadows from other intertidal vegetation can be explored with 
spectral libraries. They have been used to study the spectral discrimi
nation between macroalgal species (Casal et al., 2013; Chao Rodríguez 
et al., 2017; Dierssen et al., 2015; Douay et al., 2022; Mcilwaine et al., 
2019; Olmedo-Masat et al., 2020), and to identify different seagrass 
species (Fyfe, 2003) or to differentiate seagrass from other nearshore 
vegetation types (Légaré et al., 2022). By applying to in situ spectra 
collected with a spectroradiometer the spectral responses function of 
multi- and hyperspectral sensors, it is possible to investigate their abil
ities to classify intertidal green macrophytes. In particular, the possi
bility to discriminate seagrass from green macroalgae at a multispectral 
resolution remains to be studied using machine learning approaches. 

This study aimed at analysing the potential of multi- and hyper
spectral satellite missions (Pleiades, Sentinel-2, and PRISMA), as well as 
a multispectral drone sensor, for the discrimination of green macro
phytes from low tide soft-bottom intertidal areas when exposed using 
remote sensing. A spectral library of the spectral signatures of seagrass, 
green macroalgae, and other intertidal vegetation was compiled from 
measurements performed with a field spectroradiometer. This library 
represents a novel taxonomic and spatial coverage with spectra from a 
wide array of exposed soft-bottom intertidal habitats collected across 
almost 15 degrees of latitude. High-resolution spectra were degraded to 
each sensor spectral resolution. A combination of multivariate and 
machine learning algorithms were then performed to compare the 
ability of the different spectral resolution data at distinguishing the main 
taxonomic classes of intertidal vegetation. The wavelengths which best 
discriminated green macrophytes were identified and recommendations 
given on potential future satellite sensors. 

2. Materials and methods 

2.1. Spectral reflectance acquisition 

Spectral reflectance data were collected from a range of macroalgal, 
microphytobenthic and seagrass dominated soft-bottom intertidal areas. 
Samples were grouped at the class level: Magnoliopsida (Seagrasses), 
Ulvophyceae (Green Macroalgae), Phaeophyceae (Brown Macroalgae), 
Xanthophyceae (Yellow Algae) and Bacillariophyceae (Diatoms: Table 1 
& Fig. 1). Brown macroalgae growing on rocky substrates were added as 
they are often found stranded in the intertidal zone. Spectral reflectance 
were also recorded from sediment areas without clear vegetation, 
hereafter referred to as “bare sediment” for the sake of simplicity. Sci
entific names and taxonomy were based on the World Register of Marine 
Species (WORMS). Species were identified in situ when recently exposed 
but not covered by a layer of water. 

Multiple field campaigns taking place from 2 h prior to 2 h post 
minimum tide were carried out across temperate intertidal areas along 
the Western Atlantic coastline during the summer months (Fig. 2). The 
campaigns took place in France in Bourgneuf Bay (Barillé et al., 2010, 
2011; Zoffoli et al., 2020), Marennes-Oléron Bay, Auray Estuary, Mont- 
Saint-Michel Bay, Morbihan Gulf and Traict of Merquel, in Spain in 
Bolonia Beach (Roca et al., 2022) and Bay of Cadiz (Zoffoli et al., 2020), 
and in Portugal in the Tagus Estuary and Aveiro Lagoon. 

Most spectral data were collected with an ASD FieldSpec HandHeld 2 
spectroradiometer (Roca et al., 2022; e.g.: Zoffoli et al., 2020), which 
was wavelength calibrated using a mercury‑argon low pressure lamp. 
The spectral library of Bacillariophyceae had been obtained with a 
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GER3700 spectroradiometer (Barillé et al., 2011). Reflectance was 
measured in the visible near-infrared (VNIR) either from 325 to 1075 nm 
with the ASD spectroradiometer, or from 350 to 1050 nm with the 
GER3700 spectroradiometer (Barillé et al., 2010). Both instruments 
were used without glass fiber probe and had a spectral resolution of 3 ±
1 nm, at the Full Width Half Maximum (FWHM), but a slightly different 
sampling interval with 1 nm and 1.5 nm for the ASD and GER respec
tively. ASD spectra were resampled to match the GER resolution. Prior to 
measurement, internal optimisation was carried out to adjust integra
tion time of the instrument’s detectors to the ambient light. After a dark 
noise calibration, measurements were obtained in reflectance after 
collecting downwelling radiance over a 99% Spectralon white reference. 
To reduce instrumental noise during the data acquisition, each sample 
was measured at least 10 times over ~30 s from directly above, with the 
operator angled at 90◦ to incoming direct sunlight. The distance of 

acquisition was between 30 and 50 cm. As the field of view was ~3.5◦, 
the measured area varied from 11 to 29 cm2. Whatever the size of the 
measured area, all reflectance measurements were performed on ho
mogeneous vegetation patches, displaying 100% cover (or above bare 
sediment). 

2.2. Data analysis 

2.2.1. Spectral degradation 
The efficacy, efficiency and ability of classifying intertidal soft- 

bottom vegetation were assessed for a variety of remote-sensing sen
sors, including two multispectral satellite sensors (the high-resolution 
imager (HiRI) onboard Pleiades and the multi-spectral instrument 
(MSI) onboard Sentinel-2), one hyperspectral satellite sensor (the 
hyperspectral camera (HYC) onboard PRISMA satellite) and one 
airborne multispectral sensor (MicaSense RedEdge MX-dual Sensor on 
board a DJI Matrice 200 drone). These sensors cover a gradient of 
spectral resolution from multispectral to hyperspectral (Fig. 3). The 
spectral response functions of Pleiades and Sentinel-2 were used to 
degrade the hyperspectral library to the respective resolution of each 
sensors. The highest spatial resolution of Sentinel-2 (10 m) consists of 4 
spectral bands while the 20 m sensor has 4 additional bands in the VNIR 
spectral range (total 8 bands). Sentinel-2 spectral bands, such as at 443 
nm, were not used because its spatial resolution (60 m) is too coarse for 
intertidal seagrass mapping (Zoffoli et al., 2020). To degrade the ASD 
library to the PRISMA spectral resolution, only central wavelengths and 
bandwidths (from 400 to 900 nm) were obtained from the Agenzia 
Spaziale Italiana (ASI, 2020). Likewise, central wavelengths with 
bandwidths were available for the Micasense (“Drone” henceforth). 
Therefore, the mean of the reflectance values included in the bandwidth 
of each PRISMA and Drone function band were computed. Across all 
sensors, a moving average was applied to the ASD spectral library with a 
5 nm smoothing window to reduce instrument-induced noise in the data. 

2.2.2. Standardisation 
All spectra were standardised to reduce the effect of variable 

biomass, density or thickness of sample, with a Min-Max transformation 
(Cao et al., 2017). This calculation emphasised the spectral shapes in the 
visible range associated with the pigment composition (Douay et al., 
2022): 

R*
i (λ) =

Ri(λ) − min(Ri)

max(Ri) − min(Ri)

where Ri(λ) is the reflectance at a specific wavelength (λ) for a specific 
spectrum (i), where min(Ri) and max(Ri) are the corresponding mini
mum and maximum values. 

2.2.3. Statistical analysis 
To visually assess the differences between classes across different 

spectral resolutions dissimilarity matrices were computed for all vege
tative classes, with the cosine distance to compute a Spectral Angle 
Mapper (SAM). The SAM algorithm considers that each spectrum is a 
vector in n-dimensions space, n being the number of bands, and mea
sures the angle between two spectra to determine their dissimilarity 
(Kruse et al., 1993). The difference between classes were visualised and 
statistically assessed with non-metric Multi-Dimensional Scaling 
(nMDS) ordination and Analysis of Similarity (ANOSIM) from the 
‘vegan’ package within the programming language R (Oksanen et al., 
2022). ANOSIM was carried out on the SAM distance matrix using 999 
permutations. 

To assess the ability of different sensors at classifying intertidal 
vegetative and non vegetative classes (bare sediments, Bacillar
iophyceae, Magnoliopsida, Phaeophyceae, Ulvophyceae & Xanthophy
ceae) from their spectral reflectance data, supervised Machine Learning 
(ML) algorithms were applied from the “tidymodels” ecosystem of 

Table 1 
Number of spectra samples taken across species and classes with references of 
where and when the data were collected. Mont Saint-Michel Bay was abbrevi
ated to MSM. The location of sampling sites are shown in Fig. 2.  

Class Species Number 
of 
Spectra 

Site Reference 

Magnoliopsida      

Zostera noltei 58 

Bourgneuf 
Bay, 
Marennes- 
Oléron Bay, 
Cadiz Bay,  
Tagus Estuary, 
Aveiro Lagoon 
and Traict of 
Merquel 

Zoffoli 
et al., 2020 
and  
this study  

Zostera marina 23 Bourgneuf Bay This study 
Ulvophyceae      

Ulva sp. 16 

Bourgneuf 
Bay, Auray 
Estuary, MSM, 
Tagus Estuary, 
Aveiro Lagoon  
and Traict of 
Merquel 

Barillé 
et al., 2010 
and  
this study  

Ulva ramulosa 3 Bourgneuf Bay This study  

Ulva linza 33 
Traict of 
Merquel This study  

Chaetomorpha 
sp. 21 Morbihan Gulf This study  

Cladophora sp. 11 Morbihan Gulf This study  
Ulva lactuca 34 Morbihan Gulf This study  
Codium fragile 3 Morbihan Gulf This study 

Xanthophyceae      
Vaucheria sp. 33 Bourgneuf Bay This study 

Phaeophyceae      

Fucus 
vesiculosus 27 

MSM, 
Bourgneuf 
Bay, Morbihan 
Gulf, 
Tagus Estuary 
and Aveiro 
Lagoon 

This study  

Fucus serratus 6 MSM This study  
Fucus spiralis 13 Morbihan Gulf This study  

Ascophyllum 
nodosum 13 

MSM, Auray 
Estuary, 
Morbihan Gulf 

This study  

Rugulopteryx 
okamurae 

5 Bolonia Beach Roca et al., 
2022 

Bacillariophyceae      
Navicula 
ramosissima 10 Bourgneuf Bay 

Barillé 
et al., 2011  

Entonomeis 
paludosa 

21 Bourgneuf Bay 
Barillé 
et al., 2011  

Gyrosigma 
limosum 

2 Bourgneuf Bay Barillé 
et al., 2011  
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packages within the programming language R (Kuhn and Wickham, 
2020; R Core Team, 2022). Multiple models were developed (Random 
Forest, XGBoost and Multinomial Classifiers) with relatively similar re
sults. The model described here was an ensemble decision tree classifi
cation approach; Random Forest from the “ranger” package (Wright 
et al., 2022). As Random Forest employs randomisation of trees, 20 
repetitions of the analysis were carried out to avoid over or under rep
resentation of specific samples. Spectral data were split into training and 
testing sets using a proportion of 0.75 to 0.25 using the response variable 
to stratify samples and reduce group imbalance. Training data were then 
further split into 30 training and validation datasets using bootstrap 
resamples to allow hyper-parameter tuning from the “rsample” package 
(Silge et al., 2022). Class was modelled as a function of all available 
features (standardised reflectance of each wavelength), where all fea
tures displaying zero variance across all classes were removed before 
model tuning as zero variance values would provide no additional in
formation for the models. This meant only the first three bands of 
Pleiades and Sentinel-2 at 10 m were evaluated as their highest bands in 
the NIR showed no variance. Models were tuned to maximise the Area 
Under the Curve of the Receiver Operating Characteristic (ROC), which 
measures the diagnostic ability of a classifier based on the ratio of false 
positive and true positive rate. Accuracy, Cohen’s kappa (an accuracy 
measure that takes into account class size discrepancy), sensitivity and 
specificity were calculated using the ‘yardstick’ package, while the ‘vip’ 
package was used to calculated variable importance (Greenwell et al., 
2020; Kuhn et al., 2022). Variable importance will show the relative 
importance of different wavelengths and was calculated by the predic
tion error, using permuted out-of-bag data and comparing differences to 
the prediction error of permuted predictor variables. 

3. Results 

3.1. Spectral signatures at different spectral resolutions 

At hyperspectral resolution (ASD, PRISMA), the differences among 

vegetative habitats were obvious, with the highest dissimilarities 
observed from 550 to 650 nm and from 700 to 850 nm (Fig. 4). In 
particular, the spectral characteristics among the classes were more 
conspicuous in the green - red spectral range, such as reflectance peaks 
at 550 nm (Magnoliopsida, Ulvophyceae, Xanthophyceae), 600 nm 
(Bacillariophyceae), and 650 nm (Xanthophyceae and Bacillar
iophyceae). The absorption band at 675 nm, present in every class, 
corresponded to chlorophyll a while at 630 nm a smaller absorption 
band for the Bacillariophyceae and the Xanthophyceae corresponded to 
chlorophyll c. Phaeophyceae was the class showing the lowest reflec
tance in the visible range. All classes but the Ulvophyceae had a positive 
slope in the NIR. The degradation to a multispectral resolution made 
these spectral features harder and or impossible to distinguish. The 
differences between vegetation classes were more pronounced for the 
drone and Sentinel-2 20 m sensors (8–10 spectral bands) than for the 
Pleiades and Sentinel-2 10 m sensors (4 spectral bands). 

3.2. Spectral dissimilarity between the taxonomic classes 

The nMDS ordinations calculated with a cosine distance showed that 
all vegetation classes could be distinguished with a hyperspectral sensor 
(ASD, PRISMA), despite some overlaps between the Magnioliopsida, 
Ulvophyceae and Xanthophyceae (Fig. 5). Interestingly, similar ordi
nation patterns were also observed for the multispectral sensors with the 
highest number of bands (i.e., Drone, Sentinel-2 20 m). The greatest 
dissimilarity between classes was observed for the ASD (R = 0.638 & p 
= 0.001). The differences between PRISMA, the Drone and Sentinel-2 at 
20 m were very similar (PRISMA: R = 0.611 & p = 0.001, Drone: R =
0.588 & p = 0.001 & Sentinel-2 at 20 m), while Pleiades and Sentinel-2 
at 10 m were far lower (Pleiades: R = 0.49 & p = 0.001 & Sentinel-2 at 
10 m). Strong overlaps were observed between the classes Magnioliop
sida and Ulvophyceae at the low spectral resolution of Pleiades and 
Sentinel-2 10 m. 

Fig. 1. Examples of taxonomic classes of soft-bottom intertidal vegetation in the field (a: Phaeophyceae (Fucus vesiculosus), b: Magnoliopsida (Zostera noltei), c: 
Ulvophyceae (Ulva linza), d: Bacillariophyceae (Diatoms) and e: Xanthophyceae (Vaucheria spp.)). Scale bars show approximate scale. 
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3.3. Accuracy across sensors and importance of wavelengths 

When assessed by Random Forest modelling, accuracy metrics of 
different spectral resolutions showed that Sentinel-2 20 m and Drone 
spectra gave high mean accuracy regardless of accuracy metric (Accu
racy: 0.95 ± 0.004 for Sentinel-2 20 m & 0.948 ± 0.004 for Drone. 
Cohen’s Kappa Accuracy: 0.935 ± 0.006 for Sentinel-2 20 m & 0.934 ±
0.005 for Drone: Fig. 6 & Table 2). Above a spectral resolution of 10 
bands, there was no gain in mean accuracy even with large increases in 
spectral resolution (Accuracy: 0.95 ± 0.005 for ASD & 0.951 ± 0.006 for 
PRISMA. Cohen’s Kappa Accuracy: 0.936 ± 0.006 for ASD & 0.938 ±
0.008 for PRISMA). The sensors with the lowest spectral resolution 
(Pleiades and Sentinel-2 10 m) showed the lowest accuracy, yet still 
were accurate around 80 to 90% of the time (Accuracy: 0.861 ± 0.006 
for Pleiades & 0.835 ± 0.008 for Sentinel-2 10 m. Cohen’s Kappa Ac
curacy: 0.821 ± 0.008 for Pleiades & 0.792 ± 0.005 for Sentinel-2 10 m). 
Likewise, model specificity and sensitivity showed the greatest values 
from 8 spectral bands and above, but no increase was shown from 10 to 
300 bands (Sensitivity: 0.948 ± 0.006 for Sentinel-2 20 m, 0.941 ±
0.006 for Drone, ± 0.006 for PRISMA & 0.938 ± 0.008 for ASD; Spec
ificity: 0.989 ± 0.001 for Sentinel-2 20 m, 0.989 ± 0.001 for Drone, ±
0.001 for PRISMA & 0.989 ± 0.001 for ASD). Below 8 spectral bands, 
mean sensitivity and specificity were lowest, yet still around 85% 
(Sensitivity: 0.847 ± 0.008 for Pleiades & 0.844 ± 0.008 for Sentinel-2 

10 m; Specificity: 0.97 ± 0.001 for Pleiades & 0.966 ± 0.002 for 
Sentinel-2 10 m). 

Standardised variable importance, the relative amount the inclusion 
of a variable in the model affected its’ performance, showed the wave
lengths the model considered most important (Fig. 7). Consistently 
across all spectral resolutions, wavelengths 517–556 nm were shown to 
be highly important. When present, wavelengths around 722–754 nm 
were the most important. 

When the variable importance of the ASD was overlaid on the 
response functions for the different multispectral sensors, the ability of 
each sensor to effectively sample the wavelengths of interest become 
clearer (Fig. 8). The Drone and Pleiades sensors effectively sample the 
top of the peak in importance from 517 to 556 nm, while Sentinel-2 (10 
m and 20 m) is only sampling the edges of the peak. Both Pleiades and 
Sentinel-2 at 10 m did not sample the highest peak of importance from 
722 to 754 nm, while the Drone and Sentinel-2 at 20 m only sampled one 
side of this peak. Generally, the Drone is sampling all the major and 
minor peaks of importance apart from one minor peak around 780 nm. 

3.4. Confusion matrices 

Models accurately classed bare sediments consistently, regardless of 
spectral resolution (Fig. 9). Ulvophyceae appeared to be mislabeled the 
most, while Magnoliopsida and Phaeophyceae showed consistently high 

Fig. 2. Sample collection sites across Europe.  
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prediction accuracy, especially by the Drone data. Across all spectral 
resolutions a small number of Magnoliopsida samples were mislabeled 
as Bacilliariophyceae, Xanthophyceae and Ulvophyceae. A few Bacil
liariophyceae and Ulvophyceae samples were incorrectly labeled as 
Magnoliopsida. Likewise, identification of Xanthophyceae was con
sistenetly poor across all spectral resolutions apart from Sentinel-2 at 20 
m (Sensitivity: 0.79 ASD, 0.87 PRISMA, 0.76 Drone, 0.93 Sentinel-2 at 
20 m, 0.7 Sentinel-2 at 10 m and 0.5 Pleiades and Specificity: 0.84 ASD, 
0.84 PRISMA, 0.86 Drone, 0.82 Sentinel-2 at 20 m, 0.57 Sentinel-2 at 10 
m and 0.53 Pleiades). Pleiades and Sentinel-2 at 10 m had the worst 
Magnoliopsida classification (Sensitivity: 0.66 Sentinel-2 at 10 m and 
0.75 Pleiades; Specificity: 0.79 Sentinel-2 at 10 m and 0.8 Pleiades). 

4. Discussion 

4.1. Spectral library and vegetation classification 

Spectral libraries have been used in coastal areas to analyse the ca
pacity of hyperspectral sensors to discriminate macrophytes at different 
taxonomic resolutions (Diruit et al., 2022; Douay et al., 2022; Mcilwaine 
et al., 2019; for earlier references see Chao Rodríguez et al., 2017) or to 
estimate the background contribution on benthic diatoms reflectance 
spectra (Barillé et al., 2011). The spectral library built up for this work 
was used to study the discriminatory ability of exposed soft-bottom 
intertidal vegetation at a class taxonomic level for a variety of remote- 
sensing instruments. Importantly, the classifier was designed to be 

Fig. 3. Spectral response functions for different hyper- and multi-spectral sensors (ASD, Pleiades, Sentinel-2 (10 m), Sentinel-2 (20 m), Drone, and PRISMA).  

B.F.R. Davies et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 290 (2023) 113554

7

applicable to both multi- and hyperspectral sensors, which is an 
advantage compared to classification methods only designed for 
hyperspectral sensors, such as derivative spectral analysis (Mcilwaine 
et al., 2019). The discrimination accuracy of the vegetation classes 
increased with spectral resolution, yet showed diminishing returns for 
resolutions above ~10 spectral bands. The main result of this study was 
the capacity to discriminate seagrass from green macroalgae at a mul
tipectral resolution with ten bands when using machine learning clas
sification techniques. As expected, this discrimination was also possible 
with hyperspectral sensors. Sensors with a spectral resolution of four 
bands, such as Pleiades and Sentinel 2 (10 m), were poorer at accurately 
discriminating between green macroalgae and seagrass, as their spectral 
shapes were too similar (Fig. 4 & Fig. 6). The importance of effective 
seagrass classification is considerable, with seagrass conservation and 
restoration contributing to 16 of the 17 United Nations Sustainable 
Development Goals (SDGs: Unsworth et al., 2022). A practical restraint 
of this analysis is the necessity for non-submerged samples. However, 
the main challenge in mapping seagrass through remote sensing stems 
from confusion between similarly pigmented green algae, leading to 
high levels of uncertainty in current seagrass extent (McKenzie et al., 
2020). Vegetation classes were consistently distinguishable from bare 
sediments, as found elsewhere between bare rock and algae (Douay 
et al., 2022). Likewise, random forest models were successfully able to 
discriminate between habitats (Légaré et al., 2022; See also: Oiry and 
Barillé, 2021), with generally lower accuracy at lower spectral resolu
tion, yet even at the lowest spectral resolutions (Pleiades and Sentinel-2 
10 m) there was a mean test accuracy of 86.1% and 83.5% respectively 

(82.1% and 79.2% respectively when class imbalance was considered 
with Cohen’s kappa). 

4.2. Spectral discrimination and pigment composition 

Two wavelength regions, respectively in the green (~517–556 nm) 
and NIR (~722–754 nm) spectral domains, were identified for their 
importance to the random forest model as contributing most to the 
discrimination between taxonomic classes (Fig. 7). The wavelength 
window around 530 nm has already been recommended to distinguish 
different species of seagrass (Fyfe, 2003), and brown from green mac
roalgae (Mcilwaine et al., 2019). The spectral differences in the visible 
range between the classes are partially explained by their difference of 
pigment composition (Table 3). Pigments have different optical prop
erties and absorption wavelengths, which influence the reflectance 
spectra shapes. Chlorophyll c and fucoxanthin absorb light at 636 nm 
and 550 nm respectively (Méléder et al., 2013). Those pigments are 
present among diatoms and brown macroalgae, but absent in green 
macrophytes. Xanthophyceae also contain chlorophyll c, but no fuco
xanthin (Table 3). Chlorophylls and carotenoids absorptions can thus be 
used as diagnostic features to identify vegetation types that do not share 
the same pigmentary composition (Casal et al., 2012; Douay et al., 2022; 
Méléder et al., 2013). In this work, spectral differences have been 
observed between two classes having a similar pigment composition, the 
Magnoliopsida and the Ulvophyceae (Table 3). This indicates that the 
pigment concentrations and relative proportions, which can vary inside 
the main vegetation groups (Bargain et al., 2013; Beach et al., 1997), 

Fig. 4. Spectral signatures of different vegetation classes at different spectral resolutions (ASD, Pleiades, Sentinel-2 10, Sentinel-2 10–20 m, Drone and PRISMA). 
Lines show mean signature per wavelength, while shading shows 95% confidence interval. Confidence intervals were consisently small and therefore are hard to 
distinguish. 
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contribute to the spectral discrimination between taxonomic classes 
sharing the same pigment composition. Variations in the configuration 
of photosynthetic and accessory pigments in the 3D pigment-protein 
complexes within cells can also change the absorption features of tax
ons sharing the same pigments (Kirk, 1994), while 3D disposition of the 
plants as a whole can alter the magnitude of reflectance (Hedley et al., 
2018). As pigment absorptions correspond to narrow spectral bands 
(Douay et al., 2022; Méléder et al., 2013), discriminating the different 
types of intertidal vegetation relies on access to these specific absorption 
wavelengths, which explains why the hyperspectral sensors are gener
ally more accurate than the multispectral sensors. For the latter, the lack 
of relevant spectral bands and the large width of the available ones does 
not permit to capture the diagnostic absorption features. NIR wave
lengths have long been recognised as relevant for the spectral discrim
ination of terrestrial plant diversity (Schmidt and Skidmore, 2003). At 
these wavelengths, spectral signatures are mainly a function of light 
scattering determined by the internal structure of leaves for angiosperms 
or thallus for macroalgae (Guyot, 1990). Fyfe (2003) showed that sea
grass species could be separated using NIR wavelengths, with a signifi
cant change in the slopes between 700 and 900 nm. In our study, the 
min-max standardisation preserved the slope changes for this spectral 
domain while removing the difference related to biomass variations 

(Bargain et al., 2012). Within the NIR, the ~722–754 nm wavelength 
range was identified in our work as the most discriminant for the 
spectral separation of the taxonomic classes of intertidal macrophytes. 
The better results obtained with the Drone and Sentinel-2 (20 m) bands 
suggest that a multispectral sensor with 10 relevant VNIR spectral bands 
could discriminate the main classes considered in this study. Further
more, the wavelengths of importance for distinguishing the taxonomic 
classes here showed that the sensor used by Sentinel-2 could be greatly 
improved by the inclusion of a band at the main peaks of importance 
(~517–556 nm and ~ 722–754 nm). Both Pleiades and Sentinel-2 at 10 
m miss the the peak of highest importance. Furthermore, the marginally 
higher performance of the Pleiades sensor compared to that of the 
Sentinel-2 at 10 m could be linked to the overlap of two Pleiades bands 
over the ~517–556 nm peak, while Sentinel-2 at 10 m only has bands 
either side of this peak. Thus, future satellite missions aiming to provide 
information on global habitat cover, especially including intertidal 
habitats, should aim to provide sensors with spectral patterns that cover 
the important wavelengths shown here. Dekker et al. (2018) highlighted 
the utility multispectral sensors could have for monitoring a wide range 
of aquatic systems, recommending ~26 bands between 380 and 780 nm, 
specifically 684 nm to capture chlorophyl-a fluorescence. From the 
current analysis focusing on intertidal habitats, the most important 

Fig. 5. nMDS ordination showing similarities between vegetation classes at different spectral resolutions (ASD, Pleiades, Sentinel-2 10, Sentinel-2 10–20 m, Drone 
and PRISMA). Point distances are based on cosine distance, polygons show the minimum convex hull to surround all points. Stress values show the inaccuracy of the 2 
dimensional representations. 
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wavelengths to cover would be around 530 & 730 nm. The main reason 
for this difference with the recommendations of Dekker et al. (2018) is 
that their work was specifically focused on submerged vegetation and 
addressed a broader range of objectives. For an effective monitoring 
system, specific and broad objectives of the satellite will ideally dictate 
the spectral coverage of the sensors used. 

4.3. Geographical and temporal range of applicability 

The present spectral library aimed to represent a diversity of soft- 
bottom intertidal vegetation, with the main objective of discriminating 
seagrass from green macroalgae. However, it has a greater diversity of 
green macrophytes, making unbalanced among classes. Green macro
algae represent around 33% of the library with 121 spectra out of 366, 
while the yellow macroalgae only have 33 spectra. Such a difference has 
an impact on the statistical analysis and the discrimination results, as 
some species are over-represented and others underrepresented. Yet, use 
of Cohen’s kappa, which is an accuracy metric taking into consideration 
this imbalance, gave minimal difference to global accuracy. This library 
was built with data collected on the Atlantic coasts of France, Spain and 
Portugal and could be improved by the addition of new species or 
spectra from the existing species from other sites, both across Europe 
and globally. 

As advised by Bajjouk et al. (2019), Z. noltei spectral data were 
collected at their development peak (June to September), as it is known 
that these macrophytes have a seasonal pigment variation (Bargain 
et al., 2013). Likewise, Légaré et al. (2022) found that depending on the 
season, spectral reflectance from intertidal habitats can vary signifi
cantly. As such, the current spectral library should not be used outside a 
late spring and summer period for Western Europe, as the varying 
pigment content can affect the reflectance spectral shapes. Seagrass 
spectral analysis could also be refined by taking into account the 

Fig. 6. Accuracy metrics (accuracy, Cohen’s kappa accuracy, sensitivity and specificity) for different spectral resolutions.  

Table 2 
Accuracy metrics (accuracy, Cohen’s kappa accuracy, sensitivity and specificity) 
for different spectral resolutions ± standard error.  

Sensor Accuracy Cohen’s 
Kappa 

Sensitivity Specificity 

Sentinel-2 10 m 
(4 bands) 

0.835 ±
0.00768 

0.792 ±
0.0096 

0.844 ±
0.00807 

0.966 ±
0.00162 

Pleiades (4 
bands) 

0.861 ±
0.00609 

0.821 ±
0.00773 

0.847 ±
0.00759 

0.97 ±
0.00126 

Sentinel-2 20 m 
(8 bands) 

0.95 ±
0.00441 

0.935 ±
0.00577 

0.948 ±
0.00568 

0.989 ±
0.00104 

Drone (10 
bands) 

0.948 ±
0.00419 

0.934 ±
0.00535 

0.941 ±
0.00619 

0.989 ±
0.00094 

PRISMA (56 
bands) 

0.951 ±
0.0061 

0.938 ±
0.00778 

0.947 ±
0.00594 

0.99 ±
0.00129 

ASD (335 bands) 
0.95 ±
0.0048 

0.936 ±
0.00624 

0.938 ±
0.00751 

0.989 ±
0.0011  
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presence of epiphytes on their leaves, which was not done in this study. 
Epiphytes on seagrass leaves are known to have an impact on the shape 
of the reflectance spectra (Fyfe, 2003), as they are composed of diatoms 
and brown algae. This might explain the proximity between some sea
grass and brown macroalgae spectra and the overlap between the di
atoms and the seagrass (Fig. 5). The presence of epiphytes could alter the 
relevance of the most discriminative wavelengths between seagrass and 
other macroalgae. Furthermore, this library was created using 100% 
cover of taxonomic classes. This homogeneity is often rare at the satellite 
pixel scales (10–60 m), meaning future work should assess the spectral 
signatures of mixed intertidal vegetation to best predict extent of het
erogeneous intertidal vegetation. 

4.4. Implications for coastal biodiversity studies 

The importance of long term monitoring of ecosystems is becoming 
more acknowledged, especially when monitoring human impacts that 
may affect Essential Biodiversity Variables (EBVs), such as important 
habitats, species, or the functioning of those species or habitats (Davies 
et al., 2022a; Davies et al., 2021; El-Hacen et al., 2020; Lengyel et al., 
2008; Livore et al., 2021; Perera-Valderrama et al., 2020). This is 
becoming even more apparent with the acceleration of human induced 
climate change, which is likely to exacerbate or accelerate the effects of 
many other human impacts (Cramer et al., 2018; Sage, 2020). Yet, in situ 
long term monitoring of EBVs is rare (Edwards et al., 2010). This rarity is 
due to a range of factors, most of which are driven by financial cost, 
especially if multiple fieldwork campaigns per year are required to 

capture seasonal variation (Condal et al., 2012). Furthermore, many 
human impacts can rarely be predicted a priori, so the ability to monitor 
their impact with sufficient previous data is circumstantial (Davies et al., 
2022b; Sheehan et al., 2021). This prior data is imperative to properly 
monitor human impacts and subsequently manage the activities leading 
to those impacts appropriately (Edgar et al., 2004; Fox et al., 2017; 
Underwood, 1992). The extent, both temporally and spatially, of Earth 
Observation (EO) from satellite data alongside its accessibility means it 
has been used to study long term anthropogenic impacts (Hu et al., 
2017; Lizcano-Sandoval et al., 2022; Santos et al., 2020; Zoffoli et al., 
2021). Unlike in situ monitoring data, past EO data are easily available, 
meaning that the long term manifestation of novel phenomena can be 
assessed effectively (Mahrad et al., 2020). Here, it was shown that 
spectral reflectance measurements from a relatively low spectral reso
lution sensor (8–10 bands: e.g. sensor of Sentinel-2 at 20 m resolution) 
could effectively and accurately classify soft-bottom intertidal vegeta
tive habitats. However, the importance of spectral coverage has also 
been highlighted; when EO is being utilised, the specific response 
functions of sensors need to be aligned effectively with the objectives of 
the analysis. These considerations, alongside the temporal and spatial 
scales; revisit times of satellites, and the ability for satellites sensors to 
effectively observe important spectral differences after atmospheric 
correction is applied, will dictate the most appropriate satellites to be 
included in a Global Ocean Observing System (GOOS) for optimal 
monitoring and understanding of the Essential Ocean Variables (EOVs) 
in coastal ecosystems studies. 

Fig. 7. The relative importance of different wavelengths for model prediction across spectral resolutions.  
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4.5. Conclusions 

Here, the ability to distinguish between five different vegetative 
intertidal habitats was assessed by analysing their spectral reflectance 
signatures. Around 366 spectra were compiled across the European 
Atlantic coast, from Southern Spain to Northern France. The spectral 
library was analysed at different multi- and hyperspectral resolutions 
with the emphasis on comparing commonly used satellite and drone 
sensors. This analysis not only highlighted the ability of a random forest 
spectral classification model to distinguish between differently pig
mented habitats but also between similarly pigmented classes (green 
algae and seagrass). This approach could aid with ongoing efforts to 
accurately estimate global seagrass extent, alongside common methods 
such as Normalised Difference Vegetation Index (NDVI) that can provide 
proxies for vegetation coverage, such as monospecific intertidal seagrass 
meadow (Zoffoli et al., 2020). In particular, our work demonstrated the 
potential of discriminating intertidal seagrass from Ulvophyceae using 
satellite remote sensing, therefore unlocking a strong limitation for 
seagrass mapping in heterogeneous environments. High accuracy at 
distinguishing habitats was found for hyperspectral sensors as well as 
multispectral sensors consisting of >8 bands in the visible and near- 
infrared (ASD, PRISMA, Sentinel-2 at 20 m resolution and the Mica
Sense RedEdge MX-dual Drone sensor). As climate change alongside 

other anthropogenic activities continue to impact community stability 
and functions, and potentially altering ecosystem services, monitoring of 
habitats becomes ever more important. Intertidal habitats are a vital link 
between terrestrial and coastal marine ecosystems, yet due to their dy
namic nature and inaccessibility are difficult to assess. Therefore, the 
ability to monitor these ecosystems over time with high spatial and 
temporal resolution is important. This research provides the evidence 
that soft-bottom intertidal green macrophytes can be accurately classi
fied at spectral resolutions currently available from satellite missions, 
assuming consistency after atmospheric correction, thus offering new 
perspectives for EO biodiversity studies of intertidal ecosystems. It 
further provides advice for the next generation of satellite missions in 
terms of optimal spectral resolution and important wavelengths. 
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Table 3 
Photosynthetic and carotenoid pigments present (1) or absent (0) in each taxonomic class, along with their absorption wavelength measured in vivo and in vitro with an 
ASD spectroradiometer and by High Performance Liquid Chromatography (HPLC) respectively. Chl b: chlorophyll b, Chl c: chlorophyll c, Fuco: fucoxanthin, Zea: 
zeaxanthin, Diato: diatoxanthin, Diadino: diadinoxanthin, Neo: neoxanthin.  

Class Chl b Chl c Fuco Zea Diato Diadino Neo Lutein Source 

Magnoliopsida 1 0 0 1 0 0 1 1 Ralph et al., 2002 
Ulvophyceae 1 0 0 1 0 0 1 1 Douay et al., 2022 

Xanthophyceae 0 1 0 1 1 1 0 0 Christensen et al., 
1977 

Phaeophyceae 0 1 1 1 0 0 0 0 Douay et al., 2022 
Bacillariophyceae 0 1 1 0 1 1 0 0 Cartaxana et al., 2016 
Absorption wavelength (ASD) 650 636 550 489 496 496 – 500 Méléder et al., 2013 
Absorption wavelength 

(HPLC) 
458, 596, 
646 

442, 573, 
630 

451, 
465 

452, 
478 

453, 
481 

420, 447, 
477 

414, 437, 
466 

421, 446, 
474 

Méléder et al., 2013  
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Barillé, L., Robin, M., Harin, N., Bargain, A., Launeau, P., 2010. Increase in seagrass 
distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquat. 
Bot. 92, 185–194. https://doi.org/10.1016/j.aquabot.2009.11.006. 

Beach, K.S., Borgeas, H.B., Nishimura, N.J., Smith, C.M., 1997. In vivo absorbance 
spectra and the ecophysiology of reef macroalgae. Coral Reefs 16, 21–28. https:// 
doi.org/10.1007/s003380050055. 

Beltrand, M., Dineen, A., Hitzeroth, C., Baum, B., de Cerff, C., de Vos, C., Lewis, J., 
Zaroufis, S., Pillay, D., 2022. Warming effects on two autogenic engineers (Zostera 
capensis and Gracilaria gracilis): consequences for macrofaunal assemblages and 
benthic heterogeneity in intertidal sandflat ecosystems. Estuar. Coasts 45, 247–259. 
https://doi.org/10.1007/s12237-021-00949-8. 

Brondízio, E.S., Settele, J., Díaz, S., Ngo, H.T. (Eds.), 2019. IPBES (2019), Global 
assessment report of the Intergovernmental Science-Policy Platform on Biodiversity 
and Ecosystem Services. 

Bryndum-Buchholz, A., Tittensor, D.P., Blanchard, J.L., Cheung, W.W., Coll, M., 
Galbraith, E.D., Jennings, S., Maury, O., Lotze, H.K., 2019. Twenty-first-century 
climate change impacts on marine animal biomass and ecosystem structure across 
ocean basins. Glob. Chang. Biol. 25, 459–472. 

Cao, F., Yang, Z., Ren, J., Jiang, M., Ling, W.-K., 2017. Normalization Methods Play a 
Role for Hyperspectral Image Classification? 2–7. 

Cardoso, P., Pardal, M., Lillebø, A., Ferreira, S., Raffaelli, D., Marques, J., 2004. Dynamic 
changes in seagrass assemblages under eutrophication and implications for recovery. 
J. Exp. Mar. Biol. Ecol. 302, 233–248. 

Cartaxana, Paulo, Cruz, Sónia, Gameiro, Carla, Kûhl, Michael., 2016. Regulation of 
intertidal microphytobenthos photosynthesis over a diel emersion period is strongly 
affected by diatom migration patterns. Frontiers in Microbiology 7, 1–11. 
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sensing of zostera noltei-dominated intertidal seagrass meadows. Remote Sens. 
Environ. 251, 112020 https://doi.org/10.1016/j.rse.2020.112020. 

B.F.R. Davies et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810042635
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810042635
https://doi.org/10.3390/rs11060704
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200831095021
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200831095021
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200831095021
https://doi.org/10.1016/j.jphotobiol.2013.10.005
https://doi.org/10.1016/j.jphotobiol.2013.10.005
https://doi.org/10.1038/s41598-021-83597-z
https://doi.org/10.1038/s41598-021-83597-z
https://doi.org/10.1017/s0031182002001476
https://doi.org/10.1017/s0031182002001476
https://doi.org/10.1002/eap.1682
https://doi.org/10.1002/eap.1682
https://doi.org/10.1038/s41586-018-0805-8
https://doi.org/10.1016/j.rse.2018.10.032
https://doi.org/10.1016/j.ecolind.2020.107184
https://doi.org/10.1016/j.ecolind.2020.107184
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200823213462
https://doi.org/10.3390/rs12233870
https://doi.org/10.5281/zenodo.3463051
https://doi.org/10.5281/zenodo.3463051
http://eur-lex.europa.eu/legal-content/FR/TXT/PDF
http://eur-lex.europa.eu/legal-content/FR/TXT/PDF
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810408452
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810408452
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810408452
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810455802
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810455802
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810455802
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810455802
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810455802
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200810455802
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824037082
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824037082
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824037082
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824037082
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824037082
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200811016311
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200811016311
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200811016311
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200811016311
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200811166610
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200811166610
https://doi.org/10.1016/S0022-0981(02)00047-3
https://doi.org/10.1016/S0022-0981(02)00047-3
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200813355552
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200813355552
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200813355552
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200813355552
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819096271
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819096271
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819096271
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824067242
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200759533792
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200759533792
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200759533792
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200759533792
https://doi.org/10.3389/fevo.2021.767548
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819125241
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819125241
https://doi.org/10.1016/j.marenvres.2021.105475
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819546731
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819546731
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819546731
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200800063062
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200800063062
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819599031
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819599031
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200819599031
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820032361
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820032361
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820377041
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820377041
https://doi.org/10.1007/s13280-018-1115-y
https://doi.org/10.1007/s13280-018-1115-y
https://doi.org/10.1111/conl.12566
https://doi.org/10.1111/conl.12566
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820533151
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820533151
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200820533151
https://doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
https://doi.org/10.1127/0340-269X/2003/0033-0187
https://doi.org/10.1127/0340-269X/2003/0033-0187
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824478112
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824478112
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200824478112
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200800461112
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200800461112
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1016/j.ecolind.2021.108033
https://doi.org/10.1016/j.ecolind.2021.108033
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200829258041
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200829258041
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200829258041
http://refhub.elsevier.com/S0034-4257(23)00105-0/rf202303200829258041
https://doi.org/10.1016/j.rse.2020.112020

	Multi- and hyperspectral classification of soft-bottom intertidal vegetation using a spectral library for coastal biodivers ...
	1 Introduction
	2 Materials and methods
	2.1 Spectral reflectance acquisition
	2.2 Data analysis
	2.2.1 Spectral degradation
	2.2.2 Standardisation
	2.2.3 Statistical analysis


	3 Results
	3.1 Spectral signatures at different spectral resolutions
	3.2 Spectral dissimilarity between the taxonomic classes
	3.3 Accuracy across sensors and importance of wavelengths
	3.4 Confusion matrices

	4 Discussion
	4.1 Spectral library and vegetation classification
	4.2 Spectral discrimination and pigment composition
	4.3 Geographical and temporal range of applicability
	4.4 Implications for coastal biodiversity studies
	4.5 Conclusions

	Credit author statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


